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A generalization of the Helmholtz theorems concerning the conservation of vortex lines and the intensity of 

vortex tubes, which are well known in the hydrodynamics of a non-viscous fluid, and of Kelvin’s theorem on 

the conservation of the circulation of the velocity along a closed fluid contour is presented for the case of 

unsteady planar and axisymmetrical continuous flows of a viscous incompressible fluid. 

PLANAR and axisymmetrical unsteady flows of a viscous incompressible fluid are studied on the assumption that 
the coefficient of kinematic viscosity v is constant and that there are no external mass forces. Such flows are 
described by the well-known Navier-Stokes equations of motion, transformed to the Gromeka-Lamb form: 

dV 
T-*XO=V(i+$)-vtotf& divv==O (1) 

where v is the velocity, p is the pressure, p is the density and fi = rotv. 
Noting that Eqs (1) also hold in the case of spatial slows, let us consider the case of planar motions. In this 

case it has been previously shown that rot0 = rot(fik) = -a x VlnR, where k is the unit vector of the z-axis 
along which the vorticity fl is directed. This enables one to reduce (1) to the quasibarotropic form [l] 

av 
-- UXQ=-V(;++), o-v-vVlnQ (2) 

at 

Here u is the generalized velocity [2] which reduces to the conventional velocity v of a fluid when there is no 
viscosity. Next, by carrying out the operation of rotation on (2), it can be transformed to the Friedman 
equation [3] 

D 
helm Q -G -(QV)u+Qdivu-0 -* 

Dt 
(3) 

in the vectors n and u. 
However, according to Friedman’s theorem [3], in the unsteady case relationship (3) is a necessary and 

sufficient condition for the conservation in time of the vector lines and intensities of the vector tubes for Sz as 
they are continuously displaced at a velocity u. It therefore follows [3] from (3) that the two generalized 
Helmholtz theorems concerning the conservation of vortex lines and the intensities of vortex tubes are satisfied 
during their continuous displacement by a viscous incompressible fluid at a velocity u. 

In the special case of steady-state planar flows of a viscous fluid, it has previously been deduced [l] that 
vorticity is transported along vector y lines. It is important to note that the Bernoulli integral has also been 
found for these flows [ 11. 

We will now show that it is possible to generalize Kelvin’s theorem, concerning the conservation of the 
circulation of the velocity v along an arbitrary closed fluid contour C, if it is displaced at a velocity u. Actually, 
by using Stokes’ formula, we get 
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where S is the surface bounded by the contour C. Next, on taking the derivative DIDt of this equality and 
differentiating on the right-hand side using the well-known formula of vector analysis [4], where the surface S 
continuously moves at a velocity u, we find the required result 

where Eq. (3) has been used and account has been taken of the fact that diva = 0. 
Similar results are also obtained in the axially symmetric case with cylindrical coordinates r, 0, z. For 

instance, it can be shown that [5] 

rOt.R=-RXV lnjQr( ( Qsrot v=Qe,. V=e, t + e, d 
az 1 

where e,, e0 and rZ are the unit vectors along the coorindate axes. Hence, if one introduces a generalized 
velocity vector in the form [S] u’ = v- vVln 1 fir / and omits the prime here Friedman’s equation remains 
precisely the same in form. 

Consequently, the above-mentioned Holmholtz theorems and Kelvin’s theorem also hold in the case of 
axisymmetrical unsteady flows of a viscous incompressible fluid if the vortex lines, the tubes and the contour C 
are continuously displaced by the fluid at a velocity u’. In the steady-state axisymmetrical case, conclusions 
have previously been drawn [S] regarding the transport of vorticity and the Bernoulli integral along u’-lines. 

In concluding, we point out that the Holmholtz and Kelvin theorems have previously been extended [6-81 to 
the non-isoentropic flows of a viscous fluid and to adiabatic flows of a magnetized conducting fluid. We further 
note that all of the results of this paper can readily be generalized when account is taken of potential mass 
forces. 
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